Excerpted from “War Play: Video Games and the Future of Armed Conflict“
Corey Mead, “Shall we play a game?: The rise of the military-entertainment complex,” Salon, 19 September 2013
The origins of the U.S. military’s involvement with video games lie in its century-old status as this country’s primary sponsor of new technologies. A quick checklist of the technologies that either stem from or were significantly refined in defense-funded contexts shows how pervasive the military’s influence has been: digital computers, nuclear power, high-speed integrated circuits, the first version of the Internet, semiconductors, radar, sonar, jet engines, portable phones, transistors, microwave ovens, GPS—the list goes on. As Ed Halter writes in his book “From Sun Tzu to Xbox,” “The technologies that shape our culture have always been pushed forward by war.” …
Military-sponsored technological innovation continued apace for the next two decades, as the Department of Defense and its sub-agencies underwrote the great majority of computer and electronics research and development. In the years after the war’s end, the DoD founded a number of grant-giving agencies that continue to underwrite new technology today. Among these agencies were the highly influential Advanced Research Projects Agency (ARPA), now known as the Defense Advanced Research Projects Agency (DARPA); the Army Office of Scientific Research, now the Army Research Laboratory; and the Office of Naval Research. Throughout the 1950s and ’60s, the military remained what historian Paul Edwards notes was “the proving ground for initial concepts and prototype machines.”
Paralleling the rise of these DoD-operated institutions was an increasingly large defense contracting sector, ranging from companies whose sole focus was military contracting to larger, more diverse corporations, such as IBM, Raytheon, and General Electric, whose success was built on a combination of military subsidies and commercial sales. Beginning in the 1960s, the private electronics sector also experienced unprecedented growth, compelling it to begin pouring money into its own research and development. Despite this sector’s self-financed efforts, however, military funding continued to be the primary force spurring the creation of new technologies. …
The other major beneficiary of computer-oriented military funding during this period was academia; the Pentagon and ARPA underwrote research in the field at such prestigious institutions as Harvard, Johns Hopkins, Stanford, and UCLA. Perhaps most notably, the Massachusetts Institute of Technology, along with its groundbreaking artificial intelligence program, received the majority of its computer-related research money from the military. In their superb analysis of the video game industry, Digital Play, Stephen Kline, Nick Dyer-Witheford, and Greig de Peuter draw on this exchange to note that the “military-industrial-academic complex provided the triangular base from which the information age would be launched.” …
The roots of the military’s historical involvement with video games extend beyond its sponsorship of computers. For several decades — from the 1960s to the early 1990s — the armed forces took the lead in financing, sponsoring, and inventing the specific technology used in video games. Without the largesse of such military agencies as DARPA, the technological foundation on which the commercial game industry rests would not exist. Advanced computing systems, computer graphics, the Internet, multiplayer networked systems, the 3-D navigation of virtual environments—all these were funded by the Department of Defense. …
The military’s specific interest in computer-based war gaming can be traced to the late 1970s, when the Army War College introduced the board game Mech War into its staff officer training curriculum. Much more common during this period, however, was the development of high-end computer simulations, not games, for military training. In the 1980s, collaborators from the military, the entertainment industry, and academia began building “distributed interactive simulations” (DIS) — simulations that use distributed software or hardware to create virtual theaters of war, in which participants could interact in real time. These simulations employed the latest advances in computer graphics and virtual-reality technology, which added to the immersive qualities of their synthetic environments. As DIS technology continued to evolve into the next decade, an increasing focus on content and on compelling narratives brought these simulations closer in basic form to commercial video games.
The military’s interest in the kinds of video games popular today dates to 1980, when Atari released its groundbreaking Battlezone. Not only did Battlezone evoke a three-dimensional world, as opposed to the two-dimensional worlds of such previous arcade hits as Asteroids and Tempest, but players viewed the action from a first-person perspective, as if they themselves were tank gunners peering through their periscopes at the battlefield outside — in this case, a spare moonscape with mountains and an erupting volcano in the distance. This first-person element made Battlezone a direct ancestor of today’s enormously popular first-person shooters.
Soon after Battlezone took off, the army’s Training and Doctrine Command (TRADOC) requested Atari’s help in building a modified version of the game that could be used as a training device for the then-new Bradley infantry fighting vehicle. General Donn Starry, the head of TRADOC at the time, had recognized early on that soldiers would be more responsive to electronic training methods than to print-and lecture-based ones. “[Today’s soldiers have] learned to learn in a different world,” Starry told a TRADOC commanders’ conference in 1981, “a world of television, electronic toys and games, computers, and a host of other electronic devices. They belong to a TV and technology generation . . . [so] how is it that our soldiers are still sitting in classrooms, still listening to lectures, still depending on books and other paper reading materials, when possibly new and better methods have been available for many years?” Yet while Army Battlezone (also known as Bradley Trainer) was eventually produced, the game was never used to train any actual soldiers. …
To rectify this expensive and unwieldy practice, in 1982 DARPA drafted the help of air force captain Jack A. Thorpe, who years earlier had floated the idea that simulators did not need to physically replicate the full vehicles they were representing but could simply be used to enhance the training for these vehicles. Take aircraft: there was no need to use simulators to teach an air force pilot everything he needed to know about flying; simulators could train him only in things that he couldn’t learn from flying during peacetime. Why not, Thorpe asked, determine first which training functions were needed and then base the simulator hardware on that? …
Aware that building the kind of system he envisioned would be economically infeasible, Thorpe looked to affordable, non-DoD technology such as computer and video games to make his vision a reality. He hired military contractor Bolt, Beranek and Newman to develop the networking and system software necessary to bring SIMNET—that is, simulator networking—to life. The originality of Thorpe’s vision later prompted Wired magazine to declare, “William Gibson didn’t invent cyberspace, Air Force Captain Jack Thorpe did.” …
Throughout the spring and summer of 1995, Snyder transformed the game from an outer-space gothic fantasy into a military fire-team simulation. The Martian terrain and alien demons of the original Doom were replaced by a dun-colored landscape of pockmarked concrete bunkers and enemies who had been drawn from scans of GI Joe action figures. The cost of production? A mere $49.95—the price of one copy of Doom II.
The point of the modified game, known as Marine Doom, was to teach Marines not how to fire their weapons but how to work together in teams and make split-second decisions in the midst of combat. “A real firefight is not a good time to explore new ideas,” Snyder explains. The game had another, equally significant, rationale. “Kids who join the Marines today grew up with TV, videogames, and computers,” Barnett reasons. “So we thought, how can we educate them, how can we engage them and make them want to learn?” Barnett and Snyder’s calculations were correct: their creation became a huge hit among Marines, though, like Army Battlezone, it was never actually used for training. According to Barnett, Marines would plead to be allowed into his base’s gaming lab even after it closed at night. …
In order to maintain their livelihoods, defense contractors had to find other customers to whom they could peddle their high-tech gadgets. Yet even in this time of seeming crisis, the contractors ended up coming out ahead, as it quickly became apparent that another industry was hungry for their wares: the entertainment industry. The relationship born of this outcome was symbiotic: defense contractors would spin their technologies off into the commercial game industry, and the commercial game industry would spin its technologies right back. In an update of Eisenhower’s classic formulation, cyberpunk writer Bruce Sterling termed this win-win relationship the “military-entertainment complex”—the relentless exchange of technologies, personnel, and money that defines the bond between the military and the video game industry. …
There was one more reason for the military’s turn to simulation: modern high-tech warfare was increasingly fought through electronic and digital interfaces resembling video games. Early on, this rapid growth in the electronic mediation of warfare caused confusion even among military professionals. An oft-repeated anecdote involves the war game Operation Internal Look, undertaken by the U.S. military in July 1990, during the run-up to the first Gulf War. General Norman Schwarzkopf relates the tale in his memoirs: “As [Internal Look] got under way, the movements of Iraq’s real-world ground and air forces eerily paralleled the imaginary scenario of the game . . . As the war game began, the message center also passed along routine intelligence bulletins about the real Middle East. Those concerning Iraq were so similar to the game dispatches that the message center ended up having to stamp the fictional reports with a prominent disclaimer: ‘Exercise Only.’” …
In the 1990s, no less an entertainment icon than Mickey Mouse presided over the tightening of the military–video game industry bond. At a mid-1990s meeting of the Army Science Board, that service’s senior scientific advisory body, four-star general Paul Kern met Bran Ferren, an entertainment industry futurist with a friendly, expansive manner and a wild red beard. Ferren was the influential head of creative technology at Walt Disney Imagineering, the design and development arm of the Walt Disney Company based in Glendale, California. (Since its founding in 1952, Walt Disney Imagineering has developed dozens of innovations in the areas of special effects, interactive entertainment, fiber optics, robotics, and film techniques.)
General Kern’s first thought upon meeting Ferren, with his tan explorer’s jacket and his untamed facial hair, was, “What’s this crazy liberal doing here in the middle of our organization?” As soon as he heard Ferren speak, however, Kern found him to be an inspiring, intellectually challenging figure who crystallized many of the nascent doubts Kern had been harboring about the static state of military simulation. …
Kern was so impressed by his meetings with Ferren that he charged his subordinates with making the military more Disney-like. The military had been at the forefront of technological development for decades, he told them. Why couldn’t it now develop its capabilities to match those of the entertainment industry? …
Yet the soil from which the military-entertainment complex has grown consists of more than just technology and video games. Equally relevant to this growth is the military’s extensive, yet little noted, legacy of educational innovation. As we are about to see, this legacy— like that of technology — possesses surprisingly deep roots. …
Read the full article here.